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Abstract    

Contemporary measuring technology in condition monitoring of critical systems allow us to form 
diagnostic symptom observation vector, with components different physically, and to extract fault information 
from such created symptom observation matrix. This is possible by using singular value decomposition  
algorithm and specially written program, which enable also to optimize the dimensionality of symptom 
observation vector, and to extract needed diagnostic information. We can use as the next, the concept of 
symptom reliability and symptom hazard rate  to calculate the symptom limit value, for system maintenance 
planning and execution. It seems to be possible to perform these task in an autonomous way, and adding also 
the knowledge base and learning loop, creating in this way some first approach to Condition Inference Agent 
(CIA). 

 
1. Introduction 

Condition monitoring of critical machinery depends on observation of some symptoms3, 
(like amplitudes of vibration, the temperature, etc), and comparing them with their  limit values, 
usually determined by some long term experience. In most cases, even for sophisticated machinery 
like turbo set, every measurable symptom Si is monitored and assessed separately, by its specific 
symptom limit value Sil. But contemporary advances of measuring technology, connected with 
intelligent sensors allow us to measure and process several symptoms at the same time. Moreover, 
we can have also as measured some parameters of system operation, like mechanical or electrical 
load, the temperature, etc, or at least the system lifetime counter θ, as the first assessment of just 
enumerated components of so called logistic vector L, (see for example [CempelNatke93]).    
In this way we can form symptom  observation vector with many components, and measure it 
sequentially over the span of system life; 0 ≤ θ ≤ θb, with each row as separate  observation of 
symptom vector. This gives us so called Symptom Observation Matrix (SOM), with columns 
being the component of observed symptom vector S, and rows as successive observation; S(θ1), 
S(θ2), …  . In other words, we have  multidimensional symptom space for system condition 
monitoring, and in the theory it is possible to extract from this symptom observation space, the full 
description of system degradation taking place during its life. As  was shown in [Cempel02] using 
singular value decomposition (SVD), and lately also principal component analysis (PCA) 
[CempelTabaszewski03], it is possible to decompose information contained in SOM into 
information descending independent components called generalized symptoms, which seems to 
describe independent faults evolving in an operating system. 

As one can suspect  some symptoms can be more diagnostic oriented in a given case, so 
there is optimization task and challenge to provide along with the condition assessment. This 
challenge concerns also the determination of symptom limit values Sl, as after the decomposition  
of SOM we have no longer originally measured  symptoms, but some generalized ones. However 
basing on symptom distribution theory elaborated initially in [Cempel91,ch4] 
[NatkeCempel97,ch2.3], and later symptom reliability and hazard in [CempelNatke00], we can 
solve this problem basing only on currently assessed SOM. Finally it seems to be possible to 
implement a learning loop into just described methodology and to try to develop some Condition 
Inference Agent (CIA) for diagnostics of unitary critical systems. These problems are  described, 
some of them solved and synthesized in this paper, along with some computational program, 
which makes much easier this enormous task. 
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2. Multidimensionality in Condition Monitoring and Symptom Observation Redundancy 
   Let us take into consideration a critical machine in operation. During its life 0 < θ < θb , (θb –

anticipated breakdown time), several independent faults; Ft (θ), t = 1,2,..u, are growing. We would 
like to identify and assess these faults by forming and measuring the symptom observation vector; 
[Sm] = [S1,...,Sr], which may have components different physically, like vibration amplitudes, 
temperature, machine load, etc. In order to track machine condition evolution (faults), we are 
making equidistant reading of above symptom vector in the lifetime moments;  θn, n = 1, ... p,  θp  
≤ θb , forming in this way the rows of symptom observation matrix (SOM). From the previous 
research and papers [Cempel99], [Cempel03] we know that the best way of SOM pre processing  
is to center it (remove), and normalize (divide it) to symptom initial value; Sm (0) = S0m, of each 
given symptom (column of SOM). From these research it is also known that amount of diagnostic 
information in SOM increases if we append the lifetime θ column, as the first approximation of 
system logistic vector L. This gives us dimensionless symptom observation matrix in the form 

      Opr  = [Snm],       Snm = 1
0

−
m

nm

S
S ,                    (1) 

where bold letters indicate primary dimensional symptoms, as taken directly from measurements. 
As it was already said  in the introduction, we apply now to the dimensionless SOM (1),   the 

Singular Value Decomposition (SVD), and principal component analysis (PCA), in the form 
Opr = Upp * Σpr * Vrr

T,      (T- matrix transposition ) ,                        (2) 
where Upp is p dimensional orthogonal matrix of left hand side singular vectors, Vrr is r 
dimensional orthogonal matrix of right hand side singular vectors, and  the diagonal matrix of 
singular values Σpr  is as below 
   Σpr = diag ( σ1, …, σl ),  and   σ1 > σ2 >…> σu >0,                       (3) 
       σu+1 =… σl =0,   l= max (p, r),   u = min ( p, r). 
The above means, that from the  r measured symptoms we can extract only u ≤ r independent 
sources of diagnostic information describing evolving generalized faults Ft , (see Fig. 1). As it is 
seen from Fig. 1 upper left picture, only a few developing faults are making essential contribution 
to total fault information, the rest of  generalized faults are below the level of 10% noise.  What is 
important here, that such SVD decomposition can be made currently, after each new observation 
of the symptom vector;  n = 1, … p, and in this way we can trace the  faults evolution in a system 
(see Fig. 5). From the current research of this idea [CempelTabaszewski03],  we can say that the 
most fault oriented indices obtained from SVD/PCA is the first pair: (SDt , σt ) , and the sum of all 
indices; SumSDi , Sumσi. The first fault indices SDt  can be named as discriminant of the fault t, 
and one can get it as the SOM product and singular vector vt , as below 

SDt = Opr * vt = σt  ⋅ ut  .                        (4)  
  

We know from SVD theory, that all  singular vectors vt are normalized to one, so the  energy norm 
of new discriminant is simply  

  Norm (SDt) ≡SDt = σt. , t = 1, ...,u.              (5)    

The above discriminant SDt(θ) can be also named as fault profile, and in turn singular value σt(θ) 
seems to be its advancement (energy norm).  
The similar inference can be postulated to the meaning, and the evolution, of summation 
quantities, what can mean the  total damage profile SumSDi(θ), and total damage advancement 
Sumσi(θ),    
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But the last relation seems to be not fully validated as yet, and it seems to also, that the condition 
inference based on the above  summation measures; Sum(*) may stand for the first approach to 
multidimensional condition inference, as it is clearly seen from the Fig 1. Here railroad Diesel 
engine named sil54d2 was diagnostically monitored by vibration measurements4 performed on the 
top of one of cylinders each ten thousand kilometer of mileage, up to the breakdown. Altogether 
12 vibrational parameters were gathered in the symptom observation vector, beginning from the 
three acceleration amplitude measures; avg, rms, peak, three velocity, displacement,  and Rice 
frequency measures, with the first component in the vector being always the engine lifetime θ. 
 In this way SOM of the engine has 13 columns, and as it is seen from the upper top right picture it 
contains information concerned with several faults Ft , but only two of them are prevailing the 
10%  level of noise. The top right picture presents the life behavior of symptoms in SOM; from 0 
km mileage up to the engine breakdown at 250.000km, together with the straight line being the 
course of the engine life θ . The bottom left picture  shows the course of summation generalized 
fault discriminant SumSDi , and SD1 below it, and again the rest of generalized fault discriminant 
is on the level of noise, near the zero line. The last picture, the  bottom right shows the course of 
singular values σi , here the prevailing information is contained again in the summation 
discriminant, and the first one σ1, but the second singular value σ2 grows substantially only after 
100 thousand km mileage.  
 

 
Fig. 1. The information contents of symptom observation matrix for a Diesel engine sil54d2, and 

independent fault indices SDi , σi  as discovered by SVD/PCA computation program. 
 

                                                 
4 Author is grateful to Prof. F. Tomaszewski for borrowing the data.  
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Now we can ask the question, the 13 component of symptom observation vector and only 
one significant generalized fault can be observed ! Hence, it has to be great redundancy in our 
symptom observation space and some of measured symptoms can be omitted, can one say which 
one, and how many of them? Next Fig. 2 gives some answer to this problem presenting two 
pictures, upper one with assessment of information contribution given by each symptom to the 
overall information resource in the SOM. One can notice clearly here, that last three symptoms (11 
– 13), being the Rice frequencies of engine vibration can be really omitted. More detailed 
information on the contribution of each symptom to SD1 discriminant is shown on the bottom 
picture of Fig. 2. We can notice here, that again symptoms 11 – 13 are fully redundant, and the 
most informative symptom in our  symptom observation vector is No 3. That means the root mean 
square acceleration amplitude Arms , and the next one no7 the peak vibration velocity Vpeak are 
essential, and the same is true for overall information contribution. Also the life symptom θ (no 1) 
gives quite substantial amount of information to the overall resource in SOM, as well as to SD1 . 

 

 
Fig. 2. The redundancy assessment of   symptoms in the symptom observation space for the engine  

sil54d2 (no 11 – 13 redundant). 
 
Another question can be posed with respect o observation vector, namely  what kind of 

symptom we should chose to minimize observation redundancy ? May be to change the sensor 
location is enough, and we can use Arms  or similar symptom with large life dynamics in a different 
places of our object ? This problem addresses the next figure 3, where similar diesel engine were 
monitored vibrationally, by measuring Arms at the top of each cylinder. It is seen from all pictures 
of the Fig. 3, that  by  measuring only one symptom, even with sensor separation over half a meter, 
gives us the information on the  same fault only, and there is no gain in multiplying another sensor 
location. New information can be brought  only by the new symptom which is  different physically 
or has quite different frequency spectrum (acoustic emission, ultrasound, etc). We can use the 
same vibration symptom only if the  damping of vibration in the structure is substantial, giving no 
leakage of information among  sensors. 
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Fig. 3. Engine fault description and differentiation by 9 sensors measuring the same symptom Arms,  

but located on different cylinders of another railroad diesel engine S24 of the same type. 
 
3. Generalized Symptom Reliability for Condition Inference 

Looking at Fig 1 and / or Fig 3 bottom left pictures we may know  now the course of 
generalized symptoms in each particular case of multidimensional observation of critical 
mechanical system. We can also exclude redundant symptoms not carrying useful diagnostic 
information (see Fig. 2). But how to proceed with diagnostic inference and elaboration of "go/no 
go" maintenance decisions? On what basis we can determine the limit values Sl for generalized 
symptoms SD1,  or  SumSDi  or both,  shown on bottom left pictures of Fig.1 and 2 ?  
But we can make the statistics of observations from the calculated generalized symptoms. Being 
more specific the cumulative distribution of generalized symptom of machine being in good 
condition. It was shown by the present author in several papers that such cumulative symptom 
distribution is equivalent to symptom reliability R(S) [Cempel91], [CempelNatke00],  and  we 
can get from this also the new quantity called symptom hazard rate. Not going into the theory 
presented elsewhere, the symptom reliability  can be used for determination of symptom limit 
value Sl by using Neyman-Pearson rule of statistical decision theory  [Cempel91,ch4.3]. If we 
determine, or assume, the allowed probability  of unneeded (erroneous) repair of  machines being 
in good condition, say A, knowing also the needed availability of the machine set, say G , so 
formula leading to determination of the symptom limit value Sl  is simply 

G • R( Sl ) = A ,    ⇒    Sl = f [ R(S), A, G, ] .                (8) 
 
It seems to be simple to carry such calculation by some statistical program, Matlab® for example, 
moreover it was  show also  [Cempel91] that symptom reliability can be transformed to average 
symptom life curve  S(θ/θb) defined in the  dimensionless system lifetime. The result of  such  
calculations is shown on pictures of Fig. 4, where scale of symptom value was enlarged by +1 due 
to calculation convenience. 
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Fig. 4 Generalized symptom reliability and generalized symptom life curve of industrial fan 

observed multi dimensionally 
 
From these two pictures one can conclude, that both of them can be used for effective condition 
inference and condition based maintenance. The generalized  symptom reliability allows us to 
assess the symptom limit value Sl , while generalize symptom life curve enable us to trace the life 
evolution of our critical system, and to make right maintenance decision just on time. 
 
4. Real Time Inference and Optimization of Symptom Observation Matrix 

We have shown above being in the  multidimensional observation space that it is possible 
to optimize the dimensionality of symptom observation vector, keeping its redundancy as small as 
possible (see Fig. 2).  It was shown also, that we can calculate the symptom limit value  Sl  and 
average symptom life curve S(θ) for multidimensional inference (see Fig. 4). And now one can 
ask, well it was possible to show it at the end of system life time, just near θb , but what about the 
beginning of system operation. Can we make the same after the beginning of system observation ?  
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It seems to be, that in general it depend on the smoothness of system operation and its loading, but 
just to show how it was in the elaborated cases on Diesel engines, please analyze the sequence of  
building the fault discriminant SD1 and SumSDi , when the new row of observation has been 
added into SOM of the industrial fun, with very unstable operation. Even that, we can observe that 
generalized discriminants are stabilizing just after tens of observation, like on Fig. 5. Much more 
smooth is symptom reliability curve as well as average symptom life curve, as it can be seen from 
Fig. 4. 
 

 
Fig 5. Successive building of fault discriminants during sequential increase of system life 

(observations) 
 

Summing up, this problem of real time observation and real time inference on system condition, it 
seems to be workable, and we can elaborate all problems step by step as below. 

1. Chose the set of condition related symptoms   from the primary group  of measured 
symptoms, 

2. extract condition related information from the set of monitored symptoms, 
3. to form generalized fault symptoms as the image of evolving faults in a system 
4. to assess currently the limit values for each generalized fault 
5. to assess the system condition and make proper maintenance decision  
6. to perform condition forecasting on the basis of acquired object related specific   

knowledge, some general knowledge, and to communicate and implement it. 
When this work will precede automatically, by means of some learning loop, one can say we have 
some Condition Inference Agent (CIA). It seems to the present author that realization of this task 
is not far away goal, but only next step in the intelligent multidimensional diagnostic observation 
of  critical system. How may it proceeds in general is shown on the next Fig. 6, and one can see 
that  we must learn how to incorporate learning loop into CIA, and how to build and implement 
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diagnostic knowledge base for a specific critical system. All of this is ahead of us, and with 
contemporary knowledge [Cichosz00], [Agent04], we can make it workable soon. 
 
 

 
 
Fig. 6 Anticipated information flow in the diagnostic observation and computation in the design of 

future Condition Inference Agent 
 
5. Conclusions 

The paper is some synthesis of contemporary work  on multidimensional  diagnostics of 
critical systems. It was shown here, that we can form symptom observation vector with many 
components, being the basis for symptom observation matrix (SOM). On the basis of SOM and 
singular value decomposition (SVD) we can extract all condition related information,  and 
optimize the dimensionality of symptom observation vector. Starting from generalized fault 
discriminants we can form (in real time) the  symptom reliability R(S), for estimation of symptom 
limit value Sl, , which enable us to infer on system condition and make right maintenance decision. 
It seems to the present author, that this task can be made by some autonomous software entity 
called Condition Inference Agent – CIA, and right now this is ahead of us. 
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